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We analytically investigate the interspike interval �ISI� density, the Fano factor, and the coefficient of
variation of a leaky integrate-and-fire neuron model driven by exponentially correlated Gaussian noise with a
large correlation time �. We find a burstinglike behavior of the spike train, which is revealed by a dominant
peak of the ISI density at small intraburst intervals and a slow power-law decay of long interburst intervals.
The large, power-law distributed ISIs give rise to a coefficient of variation which diverges as ��. This leads to
the paradoxical effect that ISI correlations, as expressed by the serial correlation coefficient, vanish for large
correlation times. This is in contrast to findings of previous works on a simpler neuron model where the effect
of noise correlations appeared in higher-order statistical measures.
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I. INTRODUCTION

Understanding the dynamics and information processing
of neurons as the basic units of the gigantic cortical network
is of fundamental interest. Thereby researchers face the prob-
lem of the exceedingly complex dynamics of neurons in this
network. For instance, already a single neuron undergoes a
permanent input of spikes from thousands of other neurons,
leading to stochastic excitation of the neuron and spike emis-
sion. To capture such complexity in a mathematically acces-
sible model, the incoming spike trains are often assumed to
be independent Poisson processes that evoke a large number
of tiny postsynaptic potentials. Under the assumption of neg-
ligible small synaptic time constants this allows one to ap-
proximate the total synaptic input to the neuron by a mean
current added with Gaussian white noise �1–6�. For those
diffusion models there exist well-established tools for an
analytical treatment of the associated first-passage-time prob-
lem �Fokker-Planck equation, renewal equation�.

It is clear, however, that phenomena like synchronous
spiking of presynaptic neurons may produce a rich temporal
structure in the input signal �7�. Neuron models that are
driven by only white noise cannot account for such temporal
structure, because of the absence of correlations. As a simple
extension, colored noise with a correlation time � could thus
be used to study the impact of temporal structure. Note that
the related case of periodic driving in the presence of noise,
as known in problems of stochastic resonance �8–13�, yields
an input structure with an infinitely large correlation time.
Another source of temporal correlations results from the fil-
tering dynamics at the synapses. Depending on the type of
receptor and the state of the neuron, there is a wide range of
correlation times that are induced by synaptic filtering �14�.
In this paper we attempt to investigate the possible influence
of long-range correlations in the synaptic input on the statis-
tics of the neurons’ output spike train. In contrast to the white
noise case, this problem involves the analysis of a process
that possesses a strong non-Markovian character.

It should be noted that by now there are several works
which addressed this problem. A detailed analysis of the im-

pact of different forms of correlated noise was achieved us-
ing the perfect integrate-and-fire �PIF� model �15–17�. This
rather simple neuron model integrates the input current with-
out leakage until the neuron’s membrane potential hits a
threshold, whereupon it is reset to a prefixed value. In such
models spikes are implicitly given by the moments of thresh-
old crossing. It has been found that the coefficient of varia-
tion �CV�, which reflects the variability of the interspike in-
tervals �ISIs�, can be significantly increased by colored noise
�15�. Furthermore, the ISI density exhibits a power-law de-
cay with exponent −3 in the limit of infinitely large correla-
tion times �16�. The most interesting feature, however, is the
finding that the effect of a correlated input appears in the
higher-order statistics rather than in the statistics of the
single ISI: The spike train, e.g., is most regular on a certain
finite time scale as expressed by the Fano factor of the spike
count. Moreover, the ISIs become strongly correlated when
the correlation time is increased �16,17�. The characteristic,
exponential decay of the serial correlation coefficient �SCC�
with respect to the lag between ISIs directly translates into
the correlation time—“information” that is not given by the
ISI density.

The statistics of a renewal process, i.e., a spike train with
statistically independent ISIs, is completely described by the
ISI density. But it is not clear whether in general a nonre-
newal process is best characterized by the ISI density or by
higher-order measures. In this work we intend to analyze the
more realistic but still simple leaky integrate-and-fire �LIF�
neuron model �18�. Due to the inclusion of a leak current the
electrical properties of the membrane are described more ac-
curately, which renders the LIF model extremely useful in
theoretical studies and network simulations.

Although quite similar to the PIF model, it will turn out
that the effect of long-correlated noise is utterly different.
There exist some works on colored noise-driven LIF neurons
�7,14,15,19–23�. For instance, in the case of small correla-
tion times compared to the membrane time constant, the re-
sponse properties to periodic signals feature interesting ef-
fects �14,22�. Attempts to calculate the neural output
statistics in the case of large correlation times have been
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made by Moreno-Bote and Parga �20,23�. Considering syn-
aptic filtering in the limit of large synaptic time constants,
they use the quasideterministic membrane dynamics to de-
rive expressions for the mean firing rate and the CV in the
form of an infinite series of integrals.

Here, we present an analytical description of the ISI den-
sity of the LIF neuron driven by exponentially correlated
Gaussian noise. We consider the limit of infinite correlation
time but finite variance and find analytic approximations of
the ISI density. In this limit the shape of this ISI density
reflects a burstlike spiking dynamics that was already ob-
served in �7,20�. Furthermore, we approximate the Fano fac-
tor for different time windows and derive an expression for
the CV. The theoretical findings are compared with extensive
numerical simulations, which also reveal unexpected proper-
ties of the SCC.

II. MODEL

The dynamics of the membrane potential V�t� in the LIF
model is described by the equation

�mV̇ = − V + RIs�t� . �1�

Therein the synaptic input current Is�t� is integrated with a
membrane time constant �m. The first term on the right-hand
side corresponds to the leak current −V /R, where R denotes
the membrane resistance. The spike times ti are determined
by the moments when the membrane potential reaches the
threshold value Vth. Afterwards, the membrane potential is
reset to the value Vr�Vth and the process continues accord-
ing to Eq. �1�. The synaptic input current Is is considered
to be a stationary Gaussian random process with mean �̃
and exponential correlation function �Is�t�Is�t���− �̃2

= ��̃2 /2�s�exp�−�t− t�� /�s�. This can be realized by the linear
equation

�sİs = − Is + �̃ + �̃��t� �2�

with white Gaussian noise ��t� that obeys ���t���t���
=��t− t��.

In the following we measure time in units of the mem-
brane time constant �i.e., t /�m→ t� and use the dimensionless
variables x= �V−Vr� / �Vth−Vr� and y=R�Is− �̃� / �Vth−Vr�.
Furthermore, we introduce the quantities D= �̃2R2 /
�2�m�Vth−Vr�2�, �= �R�̃−Vr� / �Vth−Vr�, and �=�s /�m and re-
write Eqs. �1� and �2� as follows:

ẋ = − x + � + y , �ẏ = − y + �2D��t� . �3�

The membrane potential x�t� is driven by the mean input
current � and the exponentially correlated Gaussian noise
y�t� with variance �2=D /� �Ornstein-Uhlenbeck process
�OUP��:

�y�t��y�t� + t�� = �2 exp�− �t�/�� . �4�

Whenever x�t� reaches the threshold at xth=1, the membrane
potential is reset to the value x=0. The equality x�ti�=xth

again defines the spike times ti and the corresponding ISIs
Ti= ti− ti−1.

In the following we parametrize the colored noise y�t� by
the correlation time � and the variance �2 as in Eq. �4�. It
guarantees a nonvanishing noise effect in the large � limit.
Fixing the variance allows for an easy comparison of spike
trains with different �, but similar firing rates. In fact, the
firing rates �and other statistics� are largely affected by the
magnitude of the membrane potential fluctuations—a trivial
effect that we want to exclude. Hence the variance of these
fluctuations �x

2= �x2�−�2 should ideally be constant upon
variation of �. It is easily revealed that

�x
2 =

D

� + 1
=

�2�

� + 1
�5�

for the stationary process without reset. Because we consider
the case ��1, it is clear that �x keeps virtually constant if
we fix �2. This noise scaling has been frequently used in
different contexts �24,25�. In contrast, using the noise inten-
sity D instead of the variance �2=D /� would allow the tran-
sition to white noise in the limit �→0 but would imply a
vanishing of the noise in the limit �→�. A quasideterminis-
tic dynamics of the membrane potential would have been
established in the case of large correlation times: In the su-
perthreshold regime ��	1� the spike train becomes almost
periodic, whereas the firing rate of noise-induced spiking be-
comes extremely small in the subthreshold regime ���1�, in
accordance to Eq. �5�.

Note that our scaling of the noise is different from most
existing works on the effect of synaptic filtering, where the
noise is parametrized with D. This is because previous stud-
ies mostly concerned about small synaptic time constants
��1. In this case the variance of x in Eq. �5� varies only a
little when fixing the noise intensity D. Otherwise, the use of
�2 would result in rather large variations. But even in the
work �20,23�, where the case ��1 is considered, a fixed
noise intensity D is used. This might be reasonable in the
biological context of synaptic filtering, where the noisy input
is smoothed by the synaptic capacitance at the expense of the
variance �an approach unifying both limits in nonlinear dy-
namics has been proposed in �26,27��.

III. INTERSPIKE INTERVAL DENSITY

A. Inter- and intraburst intervals

Numerical simulations of the Langevin equation �3� give
an instructive insight into the effect of colored noise on the
spiking statistics. Figure 1 shows a typical trajectory of the
membrane potential x�t� and the OUP y�t� for extremely long
correlated noise ��=1000�. In this case, it becomes apparent
that the firing activity is characterized by spike bursts that
are closely related to the OUP. The main features of the
corresponding ISI density are illustrated in Fig. 2�a�: Increas-
ing the correlation time, the ISI density becomes more and
more concentrated around the most probable ISI. At the same
time the tail of the distribution becomes extremely long and
is expressed by a power-law decay. All curves show the usual
time lag at small ISI’s due to the relative refractory period
and, at the other end of the distribution, an exponential cutoff
for intervals that are much larger than the correlation time.
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The relative refractory period arises from the finite travel
time of x�t� from reset to threshold, which depends on the
input current �+y. We also notice that the most probable ISI,
indicating the maximum of the ISI density, stays practically
unchanged for different �.

The slow decay in the case of long correlated noise gives
rise to extremely large but infrequent ISIs, which has notice-
able implications on the common ISI statistics compared to
typical properties of the ISIs. For instance, the typical ISI,
which might be defined as Ttyp	exp��ln T�� �geometric
mean�, significantly differs from the mean ISI �T� �Fig. 2�b��.
The latter is virtually not altered for different correlation
times, whereas the typical ISI decreases with � until it satu-
rates close to the most probable ISI. This is in accordance
with the increasing skewness of the ISI density as depicted in
Fig. 2�c�. The skewness �or coefficient of asymmetry� is de-
fined as 
a=k3 /k2

3/2 with the cumulants k2= �T2�− �T�2 and
k3= �T3�−3�T��T2�+2�T�3. In addition to that, although more
and more ISIs concentrate around the maximum of f�T� and
thus typical deviations become smaller for large correlation
times, the standard deviation increases with �. This is shown
in Fig. 2�c� by the coefficient of variation �CV� 
v
= �k2 /k1

2�1/2 with k1= �T�. Apparently, the reason for the in-
crease in variability for large correlation times is the pres-
ence of extreme ISIs. The impact of extreme but rare events
on the variance of a random variable is usually expressed by
its kurtosis �coefficient of excess�. It is defined as 
e=k4 /k2

2,
where in our case k4= �T4�−3�T2�2−4�T��T3�+12�T�2�T2�
−6�T�4 is the fourth cumulant of the ISI density. Figure 2�c�
reveals the rapid growth of the kurtosis �note the logarithmic
scale�, which is associated to the growing influence of ex-
treme events on the neural variability.

The basic mechanism underlying this feature of the ISI
density for long-correlated noise is quite simple. Due to a
large correlation time � the noise variable y�t� is much
slower than the membrane potential x�t�. Thus it happens
that y�t� is smaller than 1−� for a rather long time. How-
ever, if y�1−� spiking is impossible since in this case
ẋ�0 for all x�1 so that the threshold cannot be reached
with a non-negative velocity. Consequently, a period with
y�t��1−� corresponds to a state without activity. We will
refer to such a state as the inactive state of the neuron. As we

will see below, the durations of these inactive states follow a
power law in the case of large correlation times. These du-
rations can thus become very large and give rise to the ex-
treme ISIs observed in simulations. In contrast, in periods
where the slowly varying noise y�t� is above 1−�, the mem-
brane potential x�t� always reaches the threshold determinis-
tically leading to fast and regular spiking. Thus the neuron
operates virtually in a superthreshold regime. If y�t� changes
sufficiently slowly, these periods can contain numerous
spikes resulting in a state of high activity. Thus we call the
state with y�t�	1−� the active state. The short, regular ISIs
within the active state correspond to the high peak of the ISI
density representing the small ISIs with its small variability.
These ISIs are typical because one active state includes many
ISIs, whereas the inactive state contributes only one ISI.

Because of the succession of active and inactive states the
global structure strongly resembles neuronal bursting. Hence
the overall process can be reduced to the switchings between
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FIG. 2. �a� ISI densities for different indicated correlation times
� obtained from numerical simulations of the Langevin equation
�3�. With increasing � the peak of the ISI density grows strongly as
more probability accumulates around the most probable ISI �which
keeps almost unaltered�. The tails of the ISI densities are depicted
in the double logarithmic plot �inset�. Note the power law decay,
which is most pronounced for �=1000, and the exponential cutoff at
T	�. �b� Mean and typical ISI are plotted as a function of �.
Whereas the mean ISI is not altered by increasing �, the typical ISI
decreases monotonically toward an asymptotic value. �c� The vari-
ability �CV�, skewness, and kurtosis of the ISI density as a function
of �. In all simulations �=0.8 and �2=0.025.
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FIG. 1. Typical trajectories x�t� and y�t� in the case of extremely
long correlated noise ��=1000�. The upper panel depicts the dy-
namics of x�t� below the threshold at x=1. �We note that the spikes
above the threshold were not generated by the system Eq. �3�, but
have been added separately.� The corresponding evolution of the
OUP y�t� is shown in the lower panel. The level b=1−� is indi-
cated by the horizontal line. Other parameters are �2=0.025 and
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the two states, on the one hand, and the spiking structure
within the active state, on the other hand. Since the active
part shows a relatively regular spiking pattern, the large vari-
ability of the ISIs results from the random switching between
states. This is in agreement with the conjecture that the vari-
ance strongly depends on the large ISIs, which are found
among the interburst intervals �durations of the inactive
states�. The statistics of these switchings is solely determined
by the OUP y�t� relative to the level b=1−�.

This intuitive picture is now used to calculate the ISI den-
sity in the case of large correlation times �. At first, we will
analyze the distribution of ISIs within the active state �in-
traburst intervals�, after which we will address the level
crossings problem of y�t�. The latter yields the distribution of
the interburst intervals �durations of the inactive states�.

B. Distribution of intraburst intervals

In general, the ISI density can be written as an average of
first-passage-time densities:

f�T� =
 f fp��T�y�g�y�dy . �6�

Here, f fp��T�y� is the first-passage-time density of the time T
to reach the threshold at x=1 for the first time starting at x
=0 with an initial value y. The average is computed over the
probability density g�y� of noise values y�ti� sampled at the
moments of reset.

Generally the function f fp��T�y� is hard to calculate. How-
ever, in the limit �→� one can use the quasistatic approxi-
mation �16,20,23�. It means that on the time scale of short
ISIs one assumes a frozen noise value y=const. Then accord-
ing to ẋ=−x+�+y the time from reset to threshold is given
by

t��y� = ln� y + �

y + � − 1
� . �7�

The first-passage-time density with given initial value y then
yields

f fp��T�y� = ��T − t��y�� . �8�

Thus the quasistatic approximation is essentially a determin-
istic description of the ISIs and the only randomness origi-
nates from the distribution of the initial values of y.

In order to find the probability density g�y� we consider
the Fokker-Planck equation of the stationary probability den-
sity p�x ,y�. It reads

��x�x − � − y� + ��y�y + �2�y��p�x,y� = − J�y���x� �9�

with the small parameter �=1 /� and the probability current
through the threshold J�y�= ��−x+�+y�p�x ,y��x=1 at a given
value y. Equation �9� is supplemented by the following con-
ditions:

p�1,y� = 0, ∀ y � b , �10�

lim
y→
�

p�x,y� = lim
y→
�

�p

�y
= lim

x→−�
p�x,y� = 0, �11�



−�

� 

−�

1

p�x,y�dxdy = 1. �12�

The condition �10� prevents trajectories from recrossing the
threshold with a negative velocity. Equations �11� and �12�
represent the obvious boundary conditions at infinity and the
normalization condition. The reset mechanism is accom-
plished by the source term on the right-hand side of Eq. �9�:
The probability current J�y� which flows at y across the
threshold is reinserted at x=0 with the same value of y. Thus,
the probability density g�y� of finding y upon resetting must
be proportional to J�y�.

In the following, the goal will be to calculate J�y� in low-
est order of � corresponding to the limit �→�. Assuming
that p�x ,y� and J�y� can be expanded in orders of � with
leading terms p0�x ,y� and J0�y�, Eq. �9� becomes in zeroth-
order

�x�x − � − y�p0�x,y� = − J0�y���x� . �13�

Note that in accordance to the quasistatic approximation, the
drift and diffusion in the y direction plays no role anymore.
Integrating over x gives

p0�x,y� =
J0�y�

y + � − x
��x� ,

where ��x� is the Heaviside function. Further integrating
yields



−�

1

p0�x,y�dx = J0�y�

0

1 dx

y + � − x
,

from which J0�y� can be obtained. In fact, the left-hand side
of the last relation gives the marginal distribution of y, which
is

P�y� =
1

�2��
exp�−

y2

2�2� , �14�

and the integral on the right-hand side yields t��y�. Thus we
obtain

g0�y� � J0�y� =
P�y�
t��y�

��y − b� . �15�

We found from simulations that the expression of the qua-
sistatic approximation fits very well the density of y values at
the threshold except for values close to the sharp peak near
y=b �Fig. 3�a� and 3�b��. The reason for that is due to the
quasistatic approximation, where we so far analyzed only the
ISIs within the active state, not taking into account the inter-
burst intervals. The sharp peak of g�y� at y
b arises from
initial conditions of those trajectories y�t� that become
smaller than b before the next firing time. Hence these tra-
jectories induce a new inactive state. Consequently, the peak
corresponds to the initial conditions of starting an inactive
state. Oppositely, the part of g�y� without peak reflects in-
deed the initial noise values within the active state.

According to Eqs. �6� and �8� and using the properties of
the � function we find

TILO SCHWALGER AND LUTZ SCHIMANSKY-GEIER PHYSICAL REVIEW E 77, 031914 �2008�

031914-4



f0�T� = 

b

�

��T − ln� y + �

y + � − 1
��g0�y�dy

= ��T����T� − 1�g0„��T� − �… ,

with

��T� =
1

1 − e−T . �16�

Using Eq. �15� the ISI density in the quasistatic approxima-
tion yields �except for a normalization factor�

f0�T� �
1

T�cosh T − 1�
exp�−

„��T� − �…2

2�2 � . �17�

This expression constitutes the limit of infinitely large corre-
lation time �. Figure 3�c� shows that for small ISIs belonging
to the active state this limit is in good agreement with the ISI
density for the large but finite correlation time �=1000. The
time scale of these intraburst intervals is much smaller than
the relaxation time � of the OUP. Thus the quasistatic ap-
proximation is valid since y�t� can be assumed constant. Fig-

ure 2�a� suggests also that in the case �=100 this expression
describes the ISI density for intraburst intervals reasonably
well. The good agreement, however, breaks down for corre-
lation times that are not much larger than the intraburst in-
tervals, which are of the order T	2. In this case the quasi-
static approximation is not suitable, which becomes clear in
Fig. 2�a�: the ISI density for �=10 already significantly de-
viates from the case �=1000.

The quasistatic approximation cannot reproduce the cor-
rect distribution of the intermediate and long ISIs as can be
seen in the inset of Fig. 3�c�. This is clear, because the qua-
sistatic theory does not account for the noise-induced inter-
burst intervals.

C. Durations of the inactive states

In order to describe the distribution of the interburst in-
tervals we address the duration of the inactive state, i.e., the
period of time in which y�t� stays below the level b=1−�.
To see that in the case of large � this duration equals an
interburst interval, we note that without resetting the fast
variable x�t� adiabatically adjusts to the slowly varying vari-
able x̄�t�=y�t�+� �24�. This is because averaging over the

fast motion of x�t� implies x̄̇=0. Hence on typical time scales
of y a level crossing of y�t� with respect to the level b=1
−� entails also a threshold crossing of the membrane poten-
tial x̄�t� at x=1. In particular, any active state between two
adjacent inactive states must include at least one spike.

By definition, an inactive state is given by the time inter-
val between a crossing of y�t� of the level b from above and
the successive recurrence of y�t� to the level b from below.
Let us further consider a finite time interval that is suffi-
ciently large; in particular the length of the interval �t should
be much larger than the durations of inactive states under
consideration. If we denote, with respect to this interval, the
mean number of inactive states whose duration exceeds a
given minimum duration T by ��T��t, the associated recur-
rence time “density” can be expressed by

��T� = −
d�

dT
. �18�

However, ��T� cannot be normalized to yield a probability
density function, since y�t� is a continuous Markov process.
In fact, there exist infinitely many level crossings in any
neighborhood of a given level crossing due to the unbound
derivative dy�t� /dt, which permanently changes sign. Conse-
quently, ��T� becomes infinitely large as T approaches zero
and hence the integral �0

���T�dT diverges. Nevertheless,
��T� has still a well defined meaning: ��T�dT�t is the mean
number of inactive states �in a large interval of length �t�
with a duration in �T ,T+dT�. Thus ��T� can be seen as the
unnormalized recurrence time density.

It seems that there exists no explicit solution for ��T� in
the case of a general OUP with b�0. However, if we confine
ourselves to small or intermediate interburst intervals T��,
we can assume that y�t� undershoots the level b only by a
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small amount. Hence in this limit the restoring force −y /�
can be assumed constant in the vicinity of b. According to
�28�, we readily obtain in this approximation

��T� =
b

2�
P�b�� − �

���
− erfc ��� , �19�

with

� =
1

4

b2

�2

T

�

and P�b�=exp�−b2 /2�2� /�2��2. Differentiating ��T� the
unnormalized recurrence time density for the case that y�t�
falls below the level b only a little yields

��T� =
1

��2� T

2�
�−3/2

exp�−
b2

2�2� T

2�
+ 1�� . �20�

The asymptotical decay of Eq. �20� for T�� is ��T�
�T−3/2 confirming our observation of a power law for large
correlation times. Indeed, the power law with exponent −3 /2
well fits the intermediate tail of the ISI density as can be seen
in the inset of Fig. 3�c�.

IV. OTHER MEASURES OF NEURAL RESPONSE

Due to the presence of temporal correlations the point
process naturally becomes nonrenewal. Therefore the ques-
tion arises whether the ISI density is sufficient or if other,
higher-order measures must be taken into account to describe
the effect of long-correlated noise. To this end, two possible
statistical descriptions of nonrenewal processes are often uti-
lized. First, one might consider the statistics of the spike
count N�t� in a fixed time window of length t for all lengths
t	0. As a matter of fact, the statistics of the count process
N�t� contains the full information about the nonrenewal point
process. A commonly used measure of the variability of this
count process is the Fano factor defined as

F�t� =
�N�t�2� − �N�t��2

�N�t��
, �21�

which is the variance-to-mean ratio of N�t�. It expresses the
variability of the spike train on a certain time scale t. More-
over, it allows for a simple comparison with a Poisson pro-
cess, for which the Fano factor equals 1 on every time scale.
Second, one might also consider the correlations within the
ISI sequence �T1 ,T2 ,T3 , . . .� in order to characterize the non-
renewal process. For several systems that generate point pro-
cesses it has been found that the effect of long-correlated
noise appears in the interval correlations rather than in the
single interval statistics. Examples include the PIF neuron
model discussed in the Introduction and, as recently shown,
residence time sequences of bistable systems �29�.

A. The Fano factor

To compute the Fano factor analytically in the case of
large correlation time �, we replace the actual spike train by
a modified process. Specifically, we assume that within the

active state spikes occur independently at times ti with con-
stant rate r. This rate might be approximated by the inverse
most probable ISI. We recall that r is virtually independent
of �. Doing so, we aim only at the description of the count
process on time scales that are much larger than 1 /r neglect-
ing the short-time structure of the count process. Introducing
the spike train n�t�=�i��t− ti� and the indicator function of
the active state s�t�=��y�t�−b�, where ��x� denotes again the
Heaviside function, we can express the counting process as

N�t� = 

0

t

n�t��s�t��dt�. �22�

Because of the stationarity of y�t� and the independence of
n�t� and s�t� we easily find the mean of N�t�,

�N�t�� = �s�rt �23�

with

�s� = 

b

� dy
�2��

exp�−
y2

2�2� =
1

2
erfc� b

�2�
� . �24�

This result also confirms our conjecture that the mean firing
rate �N�t�� / t= �s�r and consequently the mean ISIs

�T� =
1

�s�r
�25�

are independent of the correlation time � �Fig. 2�b��. The
variance ��N�t�2�= �N�t�2�− �N�t��2 can be calculated as fol-
lows:

��N�t�2� = 

0

t 

0

t

�n�t1�n�t2���s�t1�s�t2��dt1dt2 − �s�2r2t2

= r2

0

t 

0

t

C�t1 − t2�dt1dt2 �26�

with the correlation function

C�t� = �s�0�s�t�� − �s�2. �27�

This correlation function is known for the limits of small
times t�� and large times t�� �30�. In particular, the cor-
relation function for small times Cs�t� is given by

Cs�t� = C�0� −
A

��2
� t

�
�1/2

, �28�

where C�0�= �s��1− �s�� and A=exp�−b2 / �2�2��. From this
we obtain the Fano factor in the small-time limit as

F�t� = �1 − �s��rt −
4A

15�
�2

�

r

�s�
t3/2. �29�

Since the first term dominates for small t, the Fano factor
grows approximately linearly.

For large times t�� the correlation function Cl�t� can be
approximated as �30�
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Cl�t� =
A2

2�
exp�− t/�� . �30�

According to Eq. �26� the calculation of the Fano factor for
large time windows t involves the integration of C�t� over
the whole interval �0, t�, which actually requires the knowl-
edge of C�t� for intermediate times as well. An explicit ex-
pression for C�t� for intermediate times is, however, hard to
obtain. In order to derive an estimation of F�t�, we assume
that C�t�
Cs�t� for t�� and C�t�
Cl�t� for t	�. Because
of the symmetry C�−t�=C�t� of the correlation function, we
further transform the double integral of Eq. �26� into a single
integral:



0

t 

0

t

C�t1 − t2�dt1dt2 = 2

0

t

�t − t��C�t��dt�.

Using this relation, the Fano factor for times t	� yields

F�t� = F� −
r�2

t
�1 − �s� −

A2

��s�
�e−t/� +

2�2

5A
−

2

e
��

�31�

with

F� = r��2�1 − �s�� +
A

��s�
�A

e
−

2�2

3
�� . �32�

Apparently, for infinitely large time windows �t→�� the
Fano factor saturates at the finite value F�. Figure 4 shows
that our estimation agrees well with results of numerical
simulation of the Fano factor for moderate and long time
windows. By construction of the modified spike train it is
clear that our result cannot explain the short-time behavior of
the counting statistics of the actual spike pattern. The simu-
lation results reveal, however, that we do not expect a deep
minimum at a certain time scale in the LIF model, in contrast
to the observations made for the PIF neuron model �15–17�.

The large-time behavior F� gives an interesting link be-
tween the count statistics and the interval statistics. Indeed,
for a renewal point process the Fano factor is linked with the
coefficient of variation 
v by F�=
v

2 �31�. In general, this
relation does not apply to nonrenewal processes. But, as sug-
gested in �20�, this can still give a reasonable approximation
of the CV. In particular, from Eq. �32� we find that the CV
rises like the square root of the correlation time:


v 
 �F� � �� . �33�

This behavior is indeed confirmed by simulations: Figure 5
shows a good agreement of our approximation. It suggests
that despite the long correlations inherent in the driving, the
resulting spike train might be treated as a renewal process.

B. The serial correlation coefficient

To support the last conjecture we calculated the serial
correlation coefficient �SCC�, which we obtained from simu-
lations. The SCC is a common measure to characterize cor-
relations between ISIs. It is defined as the covariance of ISIs
that are lagged by an integer n normalized by the variance of
the ISIs:

�n =
�TkTk+n� − �Tk��Tk+n�

�Tk
2� − �Tk�2 . �34�

Therein, �n denotes the nth SCC and the averages are per-
formed over the index k.

Before discussing the SCC for the LIF model, it is useful
to recall the corresponding results for the simpler PIF neuron
model driven by the OUP, which was previously studied in
�16�. There it has been found that the SCC as a function
of the lag n obeys a simple exponential law: �n

PIF

=exp�−n�T� /��. This is a remarkable result, because it allows
us to directly determine an underlying correlation time �
from a measurement of the SCC and the mean ISI. The SCC
for the PIF model is illustrated in Fig. 6. It reveals that the
magnitude of the SCC is close to 1 for sufficiently small lags
�depending on �� expressing strong ISI correlations. Further-
more, in the PIF model an increasing correlation time results
in a larger SCC.
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FIG. 4. Fano factor as a function of the time window length t for
different correlation times as indicated. Symbols denote simulation
results, whereas the solid �dashed� line shows the theoretical result
for �=1000 ��=100�. The black part of the theoretical curves �t
��� is given by Eq. �29� and the gray part �t��� corresponds to
Eq. �31�. The free prefactor r describing the firing rate within the
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The LIF model only differs from the PIF model by the
introduction of a leak current. Figure 7 shows, however, that
the SCC for the LIF model has a very different behavior: the
SCC in the subthreshold case ���1� as well as in the super-
threshold case ��	1� are comparatively small. Moreover,
we do not recover the property that larger correlation times
generate larger SCCs as it can be seen in Fig. 7�b�, where on
the contrary �1 decreases with increasing �. The decreasing
behavior of �1 for large correlation times is indeed confirmed
by simulations: Figure 8 suggests that the SCC vanishes in

the limit �→�. Assuming that correlations decay with in-
creasing lag, this would imply that also higher-order SCCs
vanish, i.e., for all n�1 it holds that

lim
�→�

�n = 0. �35�

The vanishing of �1 for infinitely large correlation times
can be intuitively understood. First, we note that the variance
of ISIs grows linearly in � as shown in the previous section.
In fact, according to Eq. �33� the variance is proportional to
��T�2 and the mean ISI �T� is constant with respect to �. We
recall that the latter is a result of the noise scaling we used,
which ensures a constant firing rate for large � �cf. Sec. II�.
Second, in order to prove that �1 vanishes in the limit of
large correlation times, we show that the covariance
�TkTk+1�− �T�2 is asymptotic to a constant in this limit. To
this end, we proceed similarly as in the previous section: we
consider a slightly modified spike train, where the intraburst
intervals are replaced by intervals of length equal to the
mean intraburst interval 1 /r. As stated before, the mean in-
traburst interval 1 /r is not affected by large correlation times
and can be treated as constant. From these assumptions we
find that �TkTk+1�− �T�2=1 /r�T�− �T�2=const, since either Tk

or Tk+1 must be an intraburst interval �two interburst intervals
are separated by at least one intraburst interval�. Thus we
conclude that the SCC indeed approaches zero in the large �
limit due to a diverging variance.

Note that although the absolute values of the SCCs be-
come smaller for larger correlation times, the decay with
respect to the lag gets slower for larger �. This can be seen in
Fig. 7 and reveals that large correlation times induce long-
range correlations in the ISI sequence.

V. CONCLUSIONS

We analyzed the ISI density of a LIF neuron driven by
long-correlated Gaussian noise and described its implications
on the firing statistics. In particular, the large skewness and
kurtosis of the ISI density indicates the influence of ex-
tremely large ISIs, which is expressed by a diverging CV and
a suppressed serial correlation coefficient. Moreover, the
shape of the ISI density completely reflects the bursting be-
havior in the case of large correlation times. This is revealed
by a pronounced peak corresponding to intraburst intervals,
and a power-law tail that corresponds to interburst intervals.
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FIG. 6. The SCC for the PIF neuron model as a function of the
lag �adopted from �16��. In comparison to the LIF model, the PIF
model lacks a “restoring force” �leakage� and reads ẋ=�+y. The
parameters are �=0.8 and �2=0.025.
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old case �=0.8, �b� superthreshold case �=1.3. Note the different
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Thus typical neural firing properties like high variability and
bursting can be simply generated by using colored noise with
a large correlation time. The fact that a slow subsystem con-
trols the fast neuron dynamics yields indeed a quite common
and intuitive mechanism for bursting �32–34�. Recently, it
was also shown by information-theoretic measures that low
frequency signals can be encoded by bursts in spike trains of
pyramidal neurons �35�. It is interesting that in that paper the
experimental data could be modeled also using a LIF model.
However, the bursting pattern was achieved in a rather dif-
ferent way by including an explicit depolarizing spike-
response current. The latter accounted for a depolarizing af-
terpotential that followed each action potential. It would be
interesting whether this combination of LIF model and
spike-response model could be approximately mapped to the
simpler, stationary process investigated in the present work.

By analyzing active and inactive states separately, we de-
rived an analytical expression for the density of intraburst
intervals in the limit �→� and explained the power-law ex-
ponent of −3 /2 for the interburst intervals. The derivation of
the intraburst interval distribution relied on a time scale sepa-
ration technique similar as in �16,20,23�. For the PIF neuron
model considered in �16�, the quasistatic approximation for
the ISI density holds down to correlation times of order
�	10. Thus the region of applicability of this approximation
shrinks in the more realistic LIF model, for which the
method could well reproduce ISI densities down to �	100.
This is due to stronger variations of the deterministic travel

time t��y� in the LIF model in the case when y cannot be
assumed static anymore �note that this time even diverges if
y→1−��.

The picture of active and inactive states in the case of
large correlation times also allowed us to analytically calcu-
late the Fano factor of the LIF neuron. From this we could
obtain an expression for the CV other than infinite series
formulas previously found for the LIF neuron driven by di-
chotomous colored noise �15� and Ornstein-Uhlenbeck noise
�20�. In this paper we explained the asymptotic behavior of
the CV for large correlation times, which diverges like ��.

As a consequence of the diverging behavior of the CV we
were able to prove a surprising observation: The serial cor-
relation coefficient of the LIF neuron approaches zero in the
limit of infinitely large correlation times. This result is quali-
tatively different from the effect of colored noise in the PIF
neuron �15–17�. It means that due to the introduction of a
leak current, the spike train can be effectively treated as a
renewal process in the large � limit.
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